skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schneider, Gerald"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Premise The specialized metabolites of plants are recognized as key chemical traits in mediating the ecology and evolution of sundry plant–biotic interactions, from pollination to seed predation. Intra‐ and interspecific patterns of specialized metabolite diversity have been studied extensively in leaves, but the diverse biotic interactions that contribute to specialized metabolite diversity encompass all plant organs. Focusing on two species of Psychotria shrubs, we investigated and compared patterns of specialized metabolite diversity in leaves and fruit with respect to each organ's diversity of biotic interactions. Methods To evaluate associations between biotic interaction diversity and specialized metabolite diversity, we combined UPLC‐MS metabolomic analysis of foliar and fruit specialized metabolites with existing surveys of leaf‐ and fruit‐centered biotic interactions. We compared patterns of specialized metabolite richness and variance among vegetative and reproductive tissues, among plants, and between species. Results In our study system, leaves interact with a far larger number of consumer species than do fruit, while fruit‐centric interactions are more ecologically diverse in that they involve antagonistic and mutualistic consumers. This aspect of fruit‐centric interactions was reflected in specialized metabolite richness—leaves contained more than fruit, while each organ contained over 200 organ‐specific specialized metabolites. Within each species, leaf‐ and fruit‐specialized metabolite composition varied independently of one another across individual plants. Contrasts in specialized metabolite composition were stronger between organs than between species. Conclusions As ecologically disparate plant organs with organ‐specific specialized metabolite traits, leaves and fruit can each contribute to the tremendous overall diversity of plant specialized metabolites. 
    more » « less
  2. Abstract Dielectric spectroscopy measures the dynamics of polymer melts over a broad frequency range. Developing a theory for the spectral shape can extend the analysis of dielectric spectra beyond determining relaxation times from the peak maxima and adds physical meaning to shape parameters determined with empirical fit functions. Toward this goal, we use the experimental results on unentangled poly(isoprene), and unentangled poly(butylene oxide), polymer melts, to test whether the concept of end blocks could be one reason for the Rouse model deviating from experimental data. These end blocks have been suggested by simulations and neutron spin echo spectroscopy and are a consequence of the monomeric friction coefficient depending on the position of the bead in the chain. The concept of an end block is an approximation which partitions the chain in a middle and two end blocks to avoid overparameterization by a continuous position dependent change of the friction parameter. Analysis of dielectric spectra shows that the deviations of the calculated from the experimental normal mode cannot be related to the end block relaxation. However, the results do not contradict an end block hiding below the segmental relaxation peak. It seems that the results are compatible with an end block being the specific part of the sub-Rouse chain interpretation close to the chain ends. 
    more » « less
  3. Abstract Dielectric spectroscopy is extremely powerful to study molecular dynamics, because of the very broad frequency range. Often multiple processes superimpose resulting in spectra that expand over several orders of magnitude, with some of the contributions partially hidden. For illustration, we selected two examples, (i) normal mode of high molar mass polymers partially hidden by conductivity and polarization and (ii) contour length fluctuations partially hidden by reptation using the well-studied polyisoprene melts as example. The intuitive approach to describe experimental spectra and to extract relaxation times is the addition of two or more model functions. Here, we use the empirical Havriliak-Negami function to illustrate the ambiguity of the extracted relaxation time, despite an excellent agreement of the fit with experimental data. We show that there are an infinite number of solutions for which a perfect description of experimental data can be achieved. However, a simple mathematical relationship indicates uniqueness of the pairs of the relaxation strength and relaxation time. Sacrificing the absolute value of the relaxation time enables to find the temperature dependence of the parameters with a high accuracy. For the specific cases studied here, the time temperature superposition (TTS) is very useful to confirm the principle. However, the derivation is not based on a specific temperature dependence, hence, independent from the TTS. We compare new and traditional approaches and find the same trend for the temperature dependence. The important advantage of the new technology is the knowledge of the accuracy of the relaxation times. Relaxation times determined from data for which the peak is clearly visible are the same within the experimental accuracy for traditional and new technology. However, for data where a dominant process hides the peak, substantial deviations can be observed. We conclude that the new approach is particularly helpful for cases in which relaxation times need to be determined without having access to the associated peak position. 
    more » « less
  4. Interactions between plants and leaf herbivores have long been implicated as the major driver of plant secondary metabolite diversity. However, other plant-animal interactions, such as those between fruits and frugivores, may also be involved in phytochemical diversification. Using 12 species of Piper , we conducted untargeted metabolomics and molecular networking with extracts of fruits and leaves. We evaluated organ-specific secondary metabolite composition and compared multiple dimensions of phytochemical diversity across organs, including richness, structural complexity, and variability across samples at multiple scales within and across species. Plant organ identity, species identity, and the interaction between the two all significantly influenced secondary metabolite composition. Leaves and fruit shared a majority of compounds, but fruits contained more unique compounds and had higher total estimated chemical richness. While the relative levels of chemical richness and structural complexity across organs varied substantially across species, fruit diversity exceeded leaf diversity in more species than the reverse. Furthermore, the variance in chemical composition across samples was higher for fruits than leaves. By documenting a broad pattern of high phytochemical diversity in fruits relative to leaves, this study lays groundwork for incorporating fruit into a comprehensive and integrative understanding of the ecological and evolutionary factors shaping secondary metabolite composition at the whole-plant level. 
    more » « less
  5. {"Abstract":["Data files, chromatograms, and metadata for the Frontiers in Plant Science article "Comparative metabolomics of fruits and leaves in a hyperdiverse lineage suggests fruits are a key incubator of phytochemical diversification" . <\/p>\n\ndoi: 10.3389/fpls.2021.693739<\/p>"],"Other":["This research was supported by National Science Foundation (Grants No. DEB-1210884 and DEB-1856776 to SRW) and start-up funds to SRW from the Virginia Tech Department of Biological Sciences. The mass spectrometry resources used in this work were maintained with funds from the Fralin Life Science Institute as well as the Virginia Agricultural Experiment Station Hatch Program (VA-160085)."]} 
    more » « less
  6. null (Ed.)
  7. The arboreal ecosystem is vitally important to global and local biogeochemical processes, the maintenance of biodiversity in natural systems, and human health in urban environments. The ability to collect samples, observations, and data to conduct meaningful scientific research is similarly vital. The primary methods and modes of access remain limited and difficult. In an online survey, canopy researchers ( n = 219) reported a range of challenges in obtaining adequate samples, including ∼10% who found it impossible to procure what they needed. Currently, these samples are collected using a combination of four primary methods: (1) sampling from the ground; (2) tree climbing; (3) constructing fixed infrastructure; and (4) using mobile aerial platforms, primarily rotorcraft drones. An important distinction between instantaneous and continuous sampling was identified, allowing more targeted engineering and development strategies. The combination of methods for sampling the arboreal ecosystem provides a range of possibilities and opportunities, particularly in the context of the rapid development of robotics and other engineering advances. In this study, we aim to identify the strategies that would provide the benefits to a broad range of scientists, arborists, and professional climbers and facilitate basic discovery and applied management. Priorities for advancing these efforts are (1) to expand participation, both geographically and professionally; (2) to define 2–3 common needs across the community; (3) to form and motivate focal teams of biologists, tree professionals, and engineers in the development of solutions to these needs; and (4) to establish multidisciplinary communication platforms to share information about innovations and opportunities for studying arboreal ecosystems. 
    more » « less